
AD-A138 145 DEVELOPMENT OF A COMPLETE MODEL OF TURBULENCE REVISITED 1/1
(U) DCW INDUSTRIES INC LA CANADA CA D C WILCOX DEC 83
DCW-R29-01 ARO-19572.1-EG-S DAAG29-83-C-0003

UNCLASS IF ED F/G 20/4 NL

mIIIIIEEEEEE
IIEEIIEEEEEEE

IIIIII111mommomommol



11111= 1 U 102

1.25l UJL- 186

MICROCOPY RESOLUTION TEST CHART

%AjVR4AL BUREAU Of STANDARDS- 193-A



I Atore. /9 7.,j

DCW-R-29-01

II

I
I DEVELOPMENT OF A COMPLETE

I MODEL OF TURBULENCE REVISITED

- by

I

I lDecember 1983

E!TLE T i:*

S ELECTF S .
FEB 16 1984

Ppared forA

U.S. ARMY RESEAMCH ORGANIZATION

Research Triangle Park, North Carolina

Under Contract DAA9-29-- ) 03 . e-

SM~ Palo Drive
La Canada, California 9104

213/790-3844

84 02 16 142



Unc lassi fied
SECURITY CLASSIFICATION4 Of THIS PAGE (Mie" Data fff"Ofd)

REOTDCMNAINPAGE READ INSTRUCTIONS
REPOR DOCMENTTIONBEFORE COMPLETING FORM

I.~~V AEoTNUBRCCESSIOMNO 34:. RIXCIPIENT'S CATALOG NUMBER

19572.1-EG-
4. TTLE(410d Sblife)S. TYPE OF REPORT & PERIOD COVERED

Development of a Complete Model of Turbulence Technical Report

Revisited. PERFORMING ORG. REPORT NUMBER

7. AUTI4OR(a) a. CONTRACT OR GRANT UMSCR(a)
C

David C. Wilcox DAAG-29-83-0003

ORGANZATIN NAE ANDADDRSS10. PROGRAM ELENT PRICT. TASK
9. PERFORMING ORAIAI1 AEACAOCSAREA WORK UNIT NUMBER

DCW Industries, Inc. N/A
53514 Palm Drive
La Canada, California_91604 _____________

It. CONTROLLING OFFICE NAME AND ADORESS 12. REPORT CATE

U. S. Army Research Office '_Dec 1q_
Post Office Box 12211 13. NUMEEROF PAGES

Research Triangle Park, NC 27709 ;5wrf

T4. MONsITORING4 AGENCY NAME 6 ADDRESS(I diteunt 1"M' controlling Offic) 1S. SECURITY CLASS. (ofeI'PNt

Unclass ifn
11s.. D9CL ASSIFICTNOW DOWNGRADING

SCH EDULE

1S.- DISTRIBUTION STATEMENT (of sa Repot)

Approved for public release; distribution unlimited.

17. DISTRIOUTION STATEMENIT (Of th* 068060I Gnfffda 104 10 . Iif~ *I.5 aS Rhpef)

IS. SUPPLEMENTARY NOTES

The view, opinions, and/or findings contained in this report are those of the
author(s) and should not be construed as an official Department of the Army
Position, )olicy, or decision, unless so designated by other documentation

19. Key SORDS (Cm'(Ieu ans #ea'ae @#do i ameeWV Oidenidmfy byj Week06 naiibar)

Turbulence Models Equations of Motion
Perturbation Methods Defect-Layer Analysis
Boundary Layers
Pressure Gradients

36 ADVrACIr (CNSOM 411 MWW 80 Of 0800WI 4111 id..iU& 87 6800hu

A comprehensive and critical review of Closure approximations for two-
equati on turbulence model* has been made. Particular attention has
focused upon the scale-dettermining equation In an attempt to find the
optimum choice of dependent variable and Closure approximations. US-
Ing a combination of singular perturbation methods and numerical com-
putations, this report demonstratess (a) conventional k-e and k-win

W I JA I goDt or I 06Vs is@SB@LeTre UNCLASSIFIED



UflCLLLSS 11 1 eft1

SECURITY CLASSIFICATION OF THIS PAGE(lam Date aneng*

20. ABSTRACT CONTINUED

formulations generally are inaccurate for boundary layers in adverse
pressure gradient; (b) using so-called "wall functions" tends to mask
such models' shortcomings; and (c) there exists a more suitable choice
of dependent variables which is far more accurate for adverse pressure
gradient.

UnclasSpifed

SKCURITY CLASSIFICATION OF THIS PAOE9I(b ADo!e kteinL



II
I
I ABSTRACT

."-.A comprehensive and critical review of closure approximations for two- 
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equation turbulence models has been made. Particular attention has
focused upon the scale-determining equation in an attempt to find the
optimum choice of dependent variable and closure approximations. Us-
ing a combination of singular perturbation methods and numerical cow-
putations, this report demonstrates: (a) conventional k-e and k-wl

formulations generally are inaccurate for boundary layers in adverse
pressure gradient; (b) using so-called 4wall functions" tends to mask
such models' shortcomings; and (c) there exists a more suitable choice
of dependent variables which is far more accurate for adverse pressure
gradient.
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I 1. INTRODUCTION

During the past fifteen years, a great deal of research has focused
upon the task of devising closure approximations for the long-time-
averaged Navier-Stokes equations suitable for predicting properties

of turbulent flows. Prior to 1968, virtually all turbulence clos-
ure schemes were "incomplete", i.e., their implementation required
some advance knowledge about the flowfield under consideration in
order to obtain a solution. The best known incomplete turbulence
model is the mixing-length model (Ref 1). This model is incomplete
as the appropriate form of the mixing length must be determined em-
pirically for each new application; in general, it cannot be speci-
fied a priori.

In 1968, the first "Stanford Olympiad" (Ref 2) was held to test ex-
isting turbulence models against the best experimental data avail-

* able. The data base was confined to incompressible two-dimensional
boundary layers. Interestingly, the competition was more-ar-less
won by the "complete" model of Bradshaw, et al (Ref 3).

Perhaps spurred on by the success of the Bradshaw model, the trend
in turbulence modeling since the first Stanford Olympiad has been
toward development of complete models. For clarity, note that the
terminology "complete model of turbulence" as used in this report
means a set of equations which can be used to predict a given turb-

-ulent flow with no advance information other than boundary condi-
tions required in order to achieve a solution. The terminology is
not intended to Imply anything with regard to the range of applica-

- bility of the theory.

Over the past decade, the most vigorous modeling efforts have been
-. conducted by Donaldson, et al (Ref 4), Launder, et al (Ref 5), and

Wilcox, et al (Refs 6-9). Recognizing the substantial progress the
various researchers seemed to be making, the second "Stanford Olym-
piad" was held in 1980 and 1981 (Ref 10). This time, however, the
scope of the experimental data was expanded tremendously to include
complicating effects of compressibility, streamline curvature, sur-
face mass transfer, boundary-layer separation, secondary motions,
etc. That is, virtually every complicating effect known to man was
included in the Olympiad if experimental data of reliable quality
existed.

From this researcher's viewpoint, the results of the Second of the
$p two Stanford Olympiads were at once very encouraging and dissapoin-

ting. On the one hand, the state of the art has been shown to have
advanced far beyond the wildest dreams of evaluators of the First
Olympiad. It was hard to imagine in 1968 that separated flowfields
could be routinely predicted with any degree of accuracy Just fif-
teen short years later. COf course, turbulence modelers should re-
ceive only part of the credit; magnificent advances in numerical
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I methods such as those of MacCormack (Ref 11) have played a very im-
portant role to say the least!] On the other hand, while such pre-
dictions can be routinely made, obtaining results consistent with
experimental measurements is not nearly as routine. Far worse, it
is not even clear from the results presented at Stanford Olympiad 2
that we can predict effects of an adverse pressure gradient on the
turbulent boundary layer any more accurately than we could fifteen
years ago. Clearly, our progress in turbulence modeling has been
a bit uneven.

In light of this situation, this study has been initiated with the1objective of first taking a modest step backward by reviewing and
assessing the original closure approximations for the class of tur-
bulence models known as two-equation models, viz, closure being ac-
complished using the long-time-averaged Navier-Stokes equations and
two additional differential equations. The rationale for starting
at what would seem to be a very elementary level stems from a key
observation made at the Second Olympiad, viz, the greatest amount
of uncertainty and controversy over two-equation and higher-order
models lies in the scale-determining equation. It is even unclear
an to what the optimum choice of dependent variables is for a two-
equation model. As a result of this study, we feel we have found
the optimum choice and, based upon this choice, we have postulated
a new two-equation turbulence model.

Section 2 summarizes the new model, including arguments which set
I values of all but two of the closure coefficients appearing in the

postulated equations. Section 3 presents results of a perturbation
analysis of the incompressible defect layer, including effects of
pressure gradient. Predictions of the new model are compared with
those of the Jones-Launder (Ref 5) and the Wilcox-Rubesin (Ref 9)

Tmodels. Section 4 uses perturbation methods to analyze the viscous
sublayer, including effects of surface roughness and surface mass
injection. Section 5 presents results of application of the model
to five incompressible boundary layers. The concluding section in-

V cludes a summary of results obtained in this study.

I'
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2. EQUATIONS OF MOTION

In this section, we state the postulated equations of motion, in-
cluding established values of all closure coefficients. Physical
interpretations of turbulence field properties are given and, addi-
tionally, arguments are presented which have been used in setting
values of several of the closure coefficients.

2.1 POSTULATED EGUATIONS

For general incompressible turbulent fluid flows, the turbulence mo-
del equations are as follows.

Mass Conservation

-- 0 (1)

Momentum Conservation

uI au aT
+ _ _ + -L4 (2)t ja ax i  axj

Turbulent Mixing Energy

+ = Lk- 8*kw + -[(v+a*vT) ] (3)

Turbulent Dissipation Rate

_w + u a- Y(v+aVT) (4)
at jx 3jj x Tax a

where t is time and xi is the position vector; u denotes long-time
4. averaged velocity vector; p. p , and v are mean pressure, density,

and kinematic viscosityl and Tj Is the Reynolds-stress tensor. The
turbulent mixing energy, k, and the turbulent dissipation rate, w ,
are needed to define the eddy diffusivity, VT , which Is given by

VT - y k/ (5)

W.--3



The Reynolds-stress tensor is assumed proportional to the mean strain
' rate tensor, Sij , so that we write

2
T 2v S - -k6 (6)
ij T 1.3 3 ±3

where, by definition,

S [ !- j + (7)

±3 f ax LJ ax 1

Several closure coefficients, viz, 8, 8*, Y, Y*, a, and a* appear
in Equations (3-5). A key objective of this study has been to review
typical arguments used in establishing values of such coefficients in
a model of this type. In the next subsection and in later sections,
the arguments are presented. For convenience, the values are summar-
ized in the following equations.

8 = 3/40 , 8* = 9/100

Y - 5/9 , = 1 (8

= 1/2 , 1/2

Before proceeding to further discussion of the closure coefficients,,

it is worthwhile to pause and discuss the form of the model equations
and the physical meanings of the quantities k and w. As in other
two-equation models of turbulence, the quantity k represents a mea-
sure of the kinetic energy of the turbulence. Whether k is specifi-
cally identified as being the exact kinetic energy of the turbulence
or alternatively as the kinetic energy of the fluctuations in the di-
rection of shear (Ref 8) is not critically important. All we require
on physical grounds is that k be proportional to the square of the
velocity at which local turbulent mixing occurs. The second quantity

-- introduced in the model, W, is referred to as the turbulent dissipa-
tion rate. Its dimensions are inversely proportional to time and it
Is, in fact, the same variable used by this author in all prior turb-
ulence modeling studies. Perhaps the simplest physical interpretation

p! of W is that it is the ratio of the turbulent dissipation, C, to the
turbulent mixing energy. Alternatively, w Is the rate of dissipation
of turbulence per unit energy.

As is obvious from inspection of Equation (3), the equation for k is
modeled directly after the exact, long-time-averaged equation for the
turbulent kinetic energy. On this point, the model is consistent with
virtually all other two-equation models. The second of the two model
equations is similar in form to the equation for k. Although it adds

no rigor to the approach, the equation for w can be regarded as the

-4
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I
modeled form of the equation which would result from (a) writing the
exact equations for turbulent kinetic energy and dissipation and, (b)
making the formal change of dependent variables defined by

W = C/(O'k) (9)

The primary difference between the model postulated in this study and
those of this author's prior research is the form of the equation for
W. Most notably, past studies have written the equation in terms
of the square of w. Interestingly, the first two-equation model in
which the variables k and w were used was postulated by Kolmogorov
(gef 12) and his equation for w was written in terms of W rather than
W . The reason for this choice will become quite clear in Section
3 where we analyze model-predicted structure of the defect layer.

2.2 ESTABLISHING CLOSURE COEFFICIENT VALUES

In this subsection, we present straightforward arguments from which
values of the four closure coefficients, 8 , 8', y , and y* can be
established. A review of the arguments generally presented indicates
the following are as physically sound as possible within the context
of t o-equation turbulence models.

Considering first the coefficient y1 , we can rewrite Equations (3-6)
in terms of the quantity W/y* . Inspection of the resulting equa-
tions shows that this rescaling of w is equivalent to setting y*- 1.
Hence, with no loss of generality, we conclude that the value of y0 is
indeed unity.

Next, we turn to the ratio of B' to 8 - For decaying homogeneous,
isotropic turbulence, Equations (3-4) simplify to

dk/dt - - SOW
(10)

dw/dt - - Ow 2

from which the asymptotic solution for k is readily found to be

k tO- /O (11)

Experimental observations indicate that k no tI for decaying homo-
geneaus, Isotropic turbulence which implies 0/ - 6/5 which is con-
sistent with Equations (8).

Values for the coefficients y and B can be established by examining
the so-called "wall layerm. The wall layer is defined as the portion
of the br ndary 'Ayer sufficiently distant from the surface that mol-
ecular vi -i is negligible relative to eddy viscosity, yet close

-A-5-
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enough for convective effects to be negligible relative to the rate
at which the turbulence is being created and destroyed. In the 1.vit-
ing case of a constant-pressure boundary layer, Equations (2-7) sim-
plify to

,, r1 D U-
o = Tkkw + a[ ] (12)

0- y Bw 2  + a*..]T "

We seek the conditions under which these simplified equations yield
a solution consistent with the law of the wall, i.e., velocity vary-
ing linearly with the logarithm of distance from the surface. As can
be easily verified, Equations (12) do indeed possess a solution con-
sistent with the law of the wall, viz,

UT
u - Xn(u y/v) + constantK T

k 2 /41i (13)k U U2
T

W = uT /(T ' K y)

where u T is the conventional frictional velocity and K is Karman's
constant. There is one constraint imposed in the solution to Equa-
tions (12), namely, a unique relation exists between the implied val-
ue of Karman's constant and the various closure coefficients. Speci-
fically, the following equation must hold.

Y= 8/8' - aK 2 // (14)

Additionally, note that the Reynolds shear stress, T , is constant in
2the wall layer and is equal to uT . Finally, inspection of Equations

(13) shows that this implies T/k=AS in the wall layer. A variety
of experimental measurements (Ref 13) indicate the ratio of T to k is
about 3/10 in the wall layer. Thus, the predicted wall-layer solution
is consistent with experimental observations provided 8 - 9/100.

In summary, the arguments presented in this subsection are sufficient
to uniquely set the values of 8 , 8*, and y*. Also, Equation (14)
determines Y in terms of the, as yet undetermined, value of a . As
a byproduct of analysis in the next section, values for the two clo-
sure coefficients a and a* will be established.

-6-



3. DEFECT-LAYER ANALYSIS

In this section we use singular perturbation methods to analyze mo-
del-predicted structure of the classical defect layer. The analysis
presented is a generalization of that done by Wilcox and Traci (Ref
8). In contrast to the Wilcox and Traci analysis, effects of pres-
sure gradient have been included. Additionally, the analysis has
been done for three turbulence models, viz: the model postulated in
Equations (1-8); the Wilcox-Rubesin (Ref 9) model; and the Jones-
Launder (Ref 5) model. First, we review details of the perturbation
solution procedure. Next, we compare solutions for the three models
in the absence of pressure gradient. Then, effects of pressure gra-
dient are studied for the three models. Finally, we justify the
values chosen for the closure coefficients a and 0*

3.1 PERTURBATION SOLUTION

In the past, the only detailed analyses of the defect layer for any
turbulence model have been those of Bush and Fendell (Ref 14 - for
the mixing-length model) and Wilcox and Traci. In neither case were
effects of pressure gradient delineated. In this section we extend
the Wilcox-Traci analysis to include pressure gradient.

To study the defect layer, we seek a perturbation solution. The ex-
pansion proceeds in terms of the ratio of friction velocity to the
boundary-layer-edge velocity, u /U , and the dimensionless vertical
coordinate, r , defined by

u yUe 6Y (15)

where 6* is displacement thickness. For the sake of brevity, we
confine details of the expansion procedure to Appendix A. It Is in-
structive to note that the velocity is given by

U T U1 I- J U. n + .. (16)
Ue ue

which, to order u /U , can be rewritten as
T e

e f (Y/A) ; A - U 6#/u (17)
UT T

The coordinates appearing in Equation (17) are the classical de-
fect-layer coordinates. Additionally, it is important to note that

I-7-



pressure gradient appears in the equations of motion in dimension-

less form as

8T =6(dp/dx)/ Tw (18)

where T is the surface shear stress. Coles and Hirst (Ref 2) refer
to aT as the equilibrium parameter.

In order to solve the defect-layer equations, we have used an im-
proved version of the implicit time-marching program developed by
Wilcox and Traci. That is, we add unsteady terms to each of the
equations of motion, make an educated guess of the solution and in-
tegrate over time until the solution displays negligible temporal
variation. Computations have been done using 31, 51 and 71 points
in the grid normal to the surface to determine solution sensitivity
to the numerical algorithm. For all three models considered, dif-
ferences between solutions obtained using 31 and 71. mesh points are
less than two percent. Results of all computations given in this
section have been obtained using 51 mesh points.

3.2 FLAT-PLATE BOUNDARY LAYER

Figure 1 compares numerical predictions of the three models with
corresponding experimental data of Weighardt (ReF 2). (Note that in
the new model computation we use a = a* = 1/2; we defer any fur-
ther discussion of the appropriate values to Subsection 3.4.) The
experimental data presented are those at the highest Reynolds num-
ber for which data are reported. This is consistent with the de-
fect-layer solution which is formally valid for very large Reynolds
number. Numerical results are shown for three models, viz, the new
(NEW) model, the Wilcox-Rubesin (W-R) model, and the Jones-Launder
(J-L) model.

As shown, all three models predict velocity profiles which differfrom measured values by no more than about three percent of scale.

Interestingly, the new model shows the smallest differences from
the Weighardt data. Additionally# skin friction, cf, can be infer-

" -red from the defect-layer solution (se Appendix A). Corresponding
computed and measured values are summarized in the Insert an Figure
11 the largest difference is less than three percent. Thus, based
on analysis of the constant-pressure defect layer, there is little
difference amongst the three models.

3.3 EFFECTS OF PRESSURE GRADIENT
r" Turning now to the effect of pressure gradient, we have computed

defect-layer solutions for the equilibrium parameter, $T 9 ranging
from -0.5 to +9.0. Note that positive ST corresponds to an adverse
pressure gradient. The choice of this range of T has been dictated

-9-ii ib
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0 5
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Figure 1. Comparison of computed and measured velocity
profiles in defect-layer coordinates for a con-
stant-pressure boundary layer.
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by the requirement of the perturbation solution thatOT be constant.
This is as wide a range as we have been able to find for which ex-
perimental data have been taken with 0T more-or-less constant.

Figure 2 compares computed wake strength, T , with values inferred
by Coles and Hirst from experimental data. For the sake of clarity,
note that the wake strmgth appears in Cole's composite law-cf-the-
wall/wake profile, viz,

T  + L - (19)

Appendix A summarizes the method used to infer i from the numeri-
cal predictions.

Inspection of Figure 2 reveals provocative differences amongst the
three models. Most notably, the new model yields wake strengths
closest to values inferred from data over the complete range consi-
dered. Consistent with predictions of Chambers and Wilcox (Ref 15),
the Jones-Launder model exhibits the largest differences, with pre-
dicted wake strength 50-100% lower than inferred values when ST is
as small as two!

Figure 3 compares computed velocity profiles for ST = 9 with exper-
imental data of Clauser (Ref 2) for BT - 8.7. As with the constant
pressure case, computed and measured skin friction are included in
the insert. Consistent with the wake-strength predictions, the new
model yields a velocity profile and skin friction closest to meas-
urements while the Jones-Launder model shows the greatest differ-
ences. The Wilcox-Rubesin profile and skin friction lie about aid-
way between those of the other two models. Using Clauser's value
for displacement-thickness Reynolds number, the velocity profiles
are replotted in sublayer coordinates in Figure 4. As shown, dif-
ferences amongst the models are as pronounced in sublayer coordi-
nates as they are in defect-layer coordinates.

The explanation of the Jones-Launder model's poor performance for

-adverse pressure gradient can be developed from inspection of the

asymptotic behavior of solutions as T1 -> 0. For the three models
tested, the velocity behaves as follows.

e -- Inn + A - T nn + (20)

Swhere the constants A and B are summarized in Table 1. Note that,

* while the coefficient A is determined as part of the solution (from
the integral constraint that mass be conserved), the coefficient 8
follows directly from the limiting form of the solution as n -> 0.
As se n from Table 1, B is largest for the Jones-Launder model and

LID -10-
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Table 1. Summary of Coefficients A, B and L
in Equations (20-21) for sT=9.

Model A B L

New 13.1 10.6 -19.8
Wilcox-Rubesin 9.8 23.4 -32.6
Jones-Launder 5.4 54.8 -61.1

is smallest for the New model. The presence of the n £nn term
gives rise to the inflection in the velocity profile as n -> 0 that
is most pronounced for the Jones-Launder model. In terms of turbu-
lence properties, the turbulence length scale, t = ks/2/e,
behaves according tos

1/-> n1- + Lntn + (21)

where the coefficient L is summarized in Table 1. Again, we see
that the contribution of the n inn term is largest for the Jones-
Launder model and smallest for the New modal. Thus, in the presence
of adverse pressure gradient, the Jones-Launder Z tends to be too
large in the near-wall region. Note, of course, that this short-
coming is not evident in the constant-pressure case which has ic 0.

The manner in which the New model achieves smaller values of L than
does the Jones-Launder model can be seen by changing dependent var-
iables. That is, starting from the k - w formulation and defining
C - OkW , we can deduce the following equation for e implied by
the New model.

(1+Y)k (1+/ 8 )ac 2ov a____/, (22)
dt lk ay vT Oyj Tay y

All but the last term on the right-hand side of Equation (22) are
Identical in form to those of the Jones-Launder model (see Appendix
A). The last term is negligibly small as n -> 0 for constant-pres-
sure boundary layers because k -> constant as n - y/A -> o. HOW-
ever, ak/ay is nanvanishing when STF 0 and a(c/k)/ay generally is
quite large as n -> 0. The net effect of this additional term is
to suppress the rate of increase of i close to the surface.

As a final comment, note that all of our computations have used the
model-predicted behavior (e.g., Equations 20-21) as wall-functian
type boundary conditions for n -> 0. Using other empirical wall

-14-
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functions presumably would improve Jones-Launder predictions. How-
ever, the asymptotic behavior (e.g., inflected velocity profile)
inherent to the model ultimately must prevail at high Reynolds num-

Tber if the point+of application of the wall functions remains con-
stant at, say, y = 80. To understand this point, one need only note
that, by definition, n is related to y+ bys

+
l - y /Rea* (23)

Hence, suppressing the asymptotic behavior inherent to the model
would require using wall functions to increasingly larger values of
y+ as Reynolds number increases.

3.4 ESTABLISHING CLOSURE COEFFICIENT VALUES

Unlike the four closure coefficients discussed in Subsection 2.2,
we have been unable to find satisfactory arguments to establish the
values of a and a* prior to performing any numerical computations.
However, we have found from numerical experimentation that computed
variation of W with $ (Figure 2) seems to match experimental re-
sults most faithfully wien we use a = 0* = 1/2. Effects of depar-
tures from this pair of values are so pronounced, in fact, that our
computations seem to indicate a = a*= 1/2 represents a saddle point
in closure-coefficient space! Thus, we conclude that a and a* are
equal and the most appropriate value is 1/2.

4

ST*

*1:

jT-5

JH.
- - - !



4. SUBLAYER ANALYSIS

In order to facilitate integration of the model equations through
the viscous sublayer, we must, at a minimum, add molecular diffu-
sion terms to the equations of motion. Potentially, we might al-
so have to allow the various closure coefficients to be functions
of viscosity as well. In this section, we use perturbation meth-
ods to analyze viscous oublayer structure predicted by the new
model, including effects of surface roughness and surface mass
injection. Note that we confine our analysis to the new model as
results of Section 3 indicate it is superior to the other models
considered.

4.1 PERTUR3ATIGN 14 LUTION

Cmsidering the constant-pressure case only, convective terms are
negligible in the ublayurl thus, the equations of motion for the
new model (with molecular diffusion included) simplify to#

(V V )du/dy - u 2  (24)

T T

vT (iu/dy) B _ Bkw * (+/dy) [(v+OVbTv)dk/dy] - 0 (25)

y(du/dy)2 - + (d/dyl[(v+ vT dwldy] . 0 (26)

Five boundary conditions are needed, two of which follow from
matching to the law of the wall as y+ -> =, viz,

JTW +

k-> u/l/ and w -> ut/ w~y as y -> - (27)

Two ore boundary conditions follow from Ono slip" at the surface
which implies that u and k vanish at y 0. Thus,

+
- k - 0 at y - 0 (28)

The final condition is similar to that diedaced in earlier studies
(Refs 7-9) where we have found that for perfectly-Sm~th surfaces
molecular diffusion and dissipatim balance in oquation (26) and
this leads too

W -> V/8V SO y~ + 0 (9

*- -



More general boundary conditions for rough surfaces and for sur-
faces with mass injection will be devised in Subsections 4.2-4.3.
For now, we focus on the perfectly-smooth surface.

As part of the solution to Equations (24-29), we obtain the con-
stant in the law of the wall, B, where

u + _> 1 Iny+ + B as y -> (30)
K

We solve the sublayer equations by: (a) adding unsteady terms to
the right-hand sides of Equations (25-26); (b) making an initial
guess of the solution; and (c) using an implicit, time-marching,
second-order-accurate program to generate the long-time solution
in which the unsteady terms tend to zero. The velocity is com-
puted at each timestep using the fourth-order Runge-Kutta method.
The program used is an improved version of that developed in the
study by Wilcox and Traci (Ref 8).

Using this program, we find that Equations (24-29) predict that
the smooth-wall value of B is

B = l1 [u+ - -ny ] M 5.1 (31)

4The fact that this value is well within the scatter of measured
values of B strongly suggests that no further viscous modifica-
tions are needed for this model.

Figures 5 and 6 compare computed and measured (Refs 2,16,17) sub-
layer velocity profiles in linear and semilog coordinates. The
two figures show that computed velocities generally fall within
experimental data scatter. In Figure 7, we compare computed and
measured turbulence production and dissipation terms. Again, pre-
dictions fall well within experimental error bounds.

Perhaps the only deficiency of the predicted smooth-surface sub-
layer structure is that very near the surface the model predicts

k 'v y3.23 as y -> 0 (32)

By contrast, the Wi:lcox-Rubesin model predicts that k ', y4 which
suggests that k q, <v12>, a point this researcher has made as a
more physically plausible interpretation than saying k Is the ki-
netic energy of the turbulence. By letting the closure coefi-
cient B increase as a function of turbulent Reynolds number, ReT
defined as k/wv, it is possible to force k %, y4 but then we find
that to recover B - 5, at least two other closure coefficients
must vary with Re T (see Appendix B). Such additional complexity
is pointless in light of Figures 5 through 7.
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4.2 ROUGH-WALL ANALYSIS

A key advantage of the k-w and k-w formulations over the k-c
formulation is the fact that (-oriented equations possess solu-
tions in which the value of w may be arbitrarily specified at the
surface (Ref 15). This is an advantage because it provides a
natural way. to incorporate effects of surface roughness through
surface boundary conditions. This feature of the equations was
originally recognized by Saffman (Ref 18).

If we now rewrite the surface boundary condition (Equation 29) on
w as follows,

U2

= -- S at y = 0 (33)
v R

we can generate sublayer solutions for arbitrary SR , including
the limiting cases S -> 0 and S -> .

Figure 8 shows the computed value of B for a wide range of values
of S . As shown, in the limit SR -> -, B tends to 5.1. To de-
termine the limiting value of B as SR becomes small, we replot
the numerical results on semilog paper in Figure 9. As shown, an
excellent correlation of the numerical predictions is given by.

B -> 8.4 + 1 Zn(S /100) as S -> 0 (34)
1C R R

By experimental means, Nikuradse (Ref 19) has found that for flow
over very rough surfaces:

B -> 8.5 + 1 2n(I/k+) R kR/V (35)kCRR  T ~R/v (5

where kR is the average height of sand-grain roughness elements.
(Note that in our computations we use K = 0.41 while Nikuradse
used K = 0.40.) Thus, if we make the correlations

9 10l0/k+ k+ > > 1 (36)
-R - R R

then Equations (34) and (35) are nearly identical. Figure 10 com-
pares computed velocity profiles with the analytical fit obtained
by using Equations (34-35) in the law of the wall, viz,

u + A *4(y/kR) * S.4 (37)
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for three of the computations. The correlation is nearly exact.
The most remarkable fact about this correlation is that Equation

(37) is the form the law of the wall assumes for flow over "com-
pletely-rough" surfaces, including the value of the additive con-
stant (8.4 and 8.5 differ by one percent).

By making a qualitative argument based on flow over a wavy wall,
Wilcox and Chambers (Ref 20) have shown that for small roughness
heights, we should expect to have

SR . (1/k) 2 k k > 0 (38)

Comparison with Nikuradse's data (Figure 11) shows that the fol-
lowing correlation between S and k+  will reproduce measured
effects of sand-grain roughness for values of k+ up to about 400.

R

(50/k +)2 k + < 25
Re R (39)

100/k ; k> 25

R R

4.3 EFFECTS OF SURFACE MASS INJECTION

For boundary layers with surface mass injection, the introduction
of an additional velocity scale (v = normal flow velocity at the

* surface) suggests that the scaling for w at the surface may dif-
fer from Equation (33). Andersen, et al (Ref 17) provide further
evidence that the dissipation-rate boundary condition must be re-
vised when mass injection is present by showing, from correlation
of their experimental data, that both K and B are functions of
v+ v /u Because our rough-surface computations of the pre-
cidingwsuisection show that the value of B is strongly affected
by the surface value of the dissipation rate, this suggests that
the surface value of w will depend in some manner upon v+ . Ex-
amination of the limiting form of the model equations forW y+-> .
(i.e., the "wall-layer"...Subsection 2.2) shws immediately that
the effective Karman "constant" varies with vW according to:

S KI/(1 + v) (40)

where : is given by

- 3.11 + 0.61 iny +  (41)

-25-
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The variation of i predicted in Equations (40-41) Is consistent
with the Andersen, et al data. Including appropriate convective
terms in Equations (24-26), we have performed sublayer computa-
tions for the cases experimentally documented by Andersen, et al.
In each case, the surface value of w has been given by

U2

W =UT S at y - 0 (42)
v B

and the value of SB has been varied until optimum agreement be-
tween measured and computed velocity profiles is achieved. The
final correlation between SB and v+ is shown in Figure 12. The
correlation is given in analytical form ass

SB + 20 + (43)

( -v1+5v )

Figure 13 displays the level of agreement between theory and ex-
periment using Equations (42) and (43).

This concludes our formulation of the new turbulence model and
attending surface boundary conditions. In the following section,
we focus on application of the new model in several numerical
computations.
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5. BOUNDARY-LAYER APPLICAT IONS

We turn now to application of the new model equations to a total of
five incompressible boundary layers. First, we present details of
the manner in which we determine boundary conditions for the turbu-
lence-model parameters appropriate at the boundary-layer edge. Then
we apply the model to the constant-pressure (flat-plate) case. The
next two applications are to boundary layers in an adverse pressure
gradient. The final two applications are for boundary layers with
surface mass transfer. All computations have been done with the
model as formulated in Sections 2 through 4 and, with the viscous
modifications of Appendix B included. Graphical results are almost
identical for each corresponding pair of computations. Thus, only
one curve is presented for the flow properties displayed.

5.1 BOUNDARY-LAYER-EDGE CONDITIONS

While the preceding section discussed surface boundary conditions,
we have not yet commented on boundary conditions appropriate in the
freestream, or in the case of a boundary layer, at the edge of the
layer. In prior computations with our two-dimensional boundary-
layer program, EDDYBL (Ref 21), we have held the ratio of turbulent
energy to the square of the mean edge velocity constant at the edge
of the layer. Additionally, we have held the ratio of the turbulent
length scale, t = A /w , to the local boundary-layer thickness con-
stant. These two boundary conditions are more-or-less consistent
With our defect-layer analysis. However, In past studies, we have
found that these boundary conditions can lead to numerical diffi-
culties, particularly at high Reynolds numbers. In order to avoid
these numerical difficulties in this study, we have adopted a dif-
ferent approach.

Ideally, we would like to Implement "zero-gradient" boundary condi-
tions at the boundary-layer edge. While such conditions are "clean"
from a theoretical point of view, they are undesirable from a nu-
merical point of view. That Is, the conditions we have used in past
applications are of the Neumann type while "zero-gradient" condi-
tions are of the Dirichlet type. Almost universally, convergence of
iterative numerical schemes (EDDYBL uses an iterative scheme) is
much slower with Dirichlet conditions than with Neumann conditions.

In order to resolve this apparent dilema, we appeal directly to the
equations of motion. Beyond the boundary-layer edge, we have van-
ishing normal gradients %o that the equations for k and w simplify
to the following.

Ue dke /dx - wk e

Ue d e/dx - - we(

-30-
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where x is freistream flow direction, subscript a denotes the value
at the boundary-layer edge, and a and $* are defined in Equations
(8). The solution to Equations (44) can be obtained by simple quad-
rature, independent of integrating the equations of motion through
the boundary layer. Once ke and w are determined from Equations
(44), it is then possible to spcify Neumann-type boundary condi-
tions which guarentee zero normal gradients.

Using boundary conditions based on quadrature of Equations (44), we

have performed a series of numerical experiments to test solution
sensitivity to the boundary conditions. In all of our tests, very
little solution sensitivity is evident. Most importantly, the two
turbulence parameters k and w tend smoothly to their freestream
values. By contrast, the boundary conditions we have used in past
studies produce sharp turbulent-nonturbulent interfaces which some-
times hamper solution convergence. The new boundary conditions thus
appear to be more satisfactory.

5.2 FLAT-PLATE BOUNDARY LAYER

Our first application is the constant-pressure (flat-plate) boun-
dary layer. While this application does not provide a severe test
of the new model, it is nevertheless necessary to be sure the boun-
dary-layer program has been coded properly. Additionally, the new
model wouldn't be of much use as a predictive tool if' it were inac-
curate for this simplest of all boundary layers.

The computation begins at a plate-length Reynolds number, Rex P of
one million and continues to an Rex of 10.9 million. A total of
244 steps are taken in the streamwise direction. Grid points normal
to the surface are spaced in a geometric progression with a grading
ratio of 11%; the total number of points used to resolve the layer
increases from 61 initially to 66 by the end of the computation (to
accomodate boundary-layer growth). Numerical experimentation with
the current version of EDDYBL (Ref 22) has shown that our solutions
are grid independent for 80 mesh points. Accuracy to within 3 per-
cent can be achieved with as few as 40 mesh points.

Figures 14 and 15 compare computed and measured skin friction and
velocity profiles, respectively. As shown in Figure 14, computed
skin friction virtually duplicates corresponding measurements for
the entire range of Reynolds numbers considered. Figure 15 shows
that differences between computed and measured velocity profiles
are no more than 3 percent of scale for the three Reynolds numbers
indicated.

Thus, as no great surprise, the new model is quite accurate for the
flat-plate boundary layer. In the next two applications, we address
boundary layers experiencing an adverse pressure gradient.

-31-
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5.3 BOUNDARY LAYERS WITH ADVERSE PRESSURE GRADIENT

We consider two boundary layers with adverse pressure gradient.
The first case has a moderate adverse pressure gradient, the ex-
perimental data being those of Bradshaw (Ref 2...Case 3300). The
second case has increasingly adverse pressure gradient, the exper-
imental data being those of Samuel and Joubert (Ref 10...Flow S2).

For the Bradshaw case, a total of 90 streamwise steps are needed
to march from x = 2.5 ft to x = 7.0 ft, corresponding to Rex in-
creasing from about 2 million to about 4 million. A geometric-
progression ratio of 13" is used to construct the grid normal to
the surface with a total of 61 points throughout the computation.

Figures 16 and 17 compare computed and measured skin friction and
a velocity profile. Inspection of both graphs shows that differ-
ences between theory and experiment nowhere exceed 5 percent for
this flow.

In the Samuel-Joubert case, we use 100 streamwise steps to march
from x = 1 m to x= 3.40 m, corresponding to an Rex range of about
2 million to 4 million. To achieve an extremely accurate numer-
ical solution in this case, we have used a geometric-progression

I ratio of 7.8% and a total of 81 mesh points. Results differ from
a 61-point computation by less than a half a percent.

' Figures 18 and 19 compare computed and measured skin friction and
two velocity profiles for this flow. Computed and measured skin
friction differ by less than 7 percent of scale. The velocity pro-
files at x = 2.87 m are within 5 percent while those at x = 3.40 m
differ by no more than 9 percent. Although our predictions for
this case differ from measurements a bit more than the other two
cases, note that our predictions for this flow at the Second Stan-
ford Olympiad typically differed from measurements by as much as
25 percent, and our prediction was one of the best submitted.

5.4 BOUNDARY LAYERS WITH SURFACE MASS TRANSFER

As our final two applications of the model, we consider two cases
with surface mass transfer. Both cases were included in the 1981
Stanford Olympics (Ref 10) and data for both cases were taken by
Andersen, et al (Ref 17). The first case has surface mass injec-
tion rate, v given by .00375 U e. The second case has surface
mass removal wrate, v, given by -. 00375 Ue. For the blowing case
pressure is constant, while the suction case has a slight adverse
pressure gradient.

Figures 20 and 21 compare computed and measured skin friction and
velocity profiles, respectively, for the blowing case. As shown,
computed and measured skin friction differ by less than 4 percent

-34-
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of scale while computed and measured velocity profiles are within
3 percent of each other.

Figures 22 and 23 compare computed and measured skin friction and
velocity profilesp respectively, for the suction case. As shown,
after the Initial transient (caused by a poor choice of initial
k and profiles), computed skin friction asymptotes to a value 4
percent higher than measured. The computed velocity profile lies
within 5 percent of corresponding measurements.
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I
6. VY AND CONCLUSIONS

The primary objectives of this study have been accomplished, viz,
we have made a critical review of closure approximations used in
two-equation turbulence models and determined what appears to be
an optimum choice of dependent variables. As a result, we have
developed a new two-equation model which shows promise of being
more accurate for boundary layers in an adverse pressure gradient
than any other si mi 1ar model.

As in our prior turbulence modeling efforts, we have made exten-
sive use of perturbation methods (Sections 3 and 4). In contrast
to prior studies, our analysis of the defect layer includes pres-
sure gradient. As discussed in Section 3, limiting the defect-
layer analysis to the constant-pressure case displays little dif-
ference amongst the various two-equation models in general usage.
However, as soon as an adverse pressure gradient is included, the
models exhibit large differences. As a general observation, the
Second Stanford Olympiad demonstrated that modern turbulence mo-
dels are not much more accurate than those in use 15 years ago if
the flow of concern is a boundary layer in adverse pressure gra-
dient. The analysis of Section 3 indicates why this is true and,
with the introduction of the new model, offers the basis for de-
velopment of new models which are accurate for such flows.

The model thus far has been tested for five incompressible boun-
dary layers. Certainly much more testing is needed before the
model can be offered for general use. Additional testing will be
done in future research efforts. However, additional development
of the model will be needed before such tests can or should be
done. Specifically, the model must be generalized for compres-
sibility and, even more importantly, the constitutive relation
between Reynolds stress and mean-flow properties must be revised.
The relation proposed in Equation (6) fails to predict anisotropy
of the normal stresses, and does not account for streamline cur-
vature effects. Additionally, it is not at all clear that model
predictions will bpar any relation to physical reality for flows
which are unsteady. Because unsteady boundary layers are of key
interest in the overall Contract objectives, future development
efforts must include unsteady flow analysis and application.

i
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APPENDIX A: DEFECT-LAYER EQUATIONS

In this Appendix, we present details of the formal perturbation ex-
pansion solution to the defect-layer equations. First, we summarize
the three turbulence models under consideration. Next, we outline
the form of the perturbation expansions and state the equations for
the leading order terms in the expansions. Then, we present boun-
dary conditions used in solving the defect-layer equations. Final-
ly, we indicate the manner in which skin friction and wake strength
can be extracted from the defect-layer solution.

A. 1 TURBULENCE MODELS UNDER CONSIDERATION

In analyzing the defect layer, we focus on three turbulence models,
viz, the new model postulated in Section 2, the Wilcox-Rubesin mo-
del (Ref 9) and the Jones-4aunder model (Ref 5). For all three of
the models we must solve the equations for mean mass and momentum
conservation, an equation for a turbulent energy scale and an equa-
tion for a turbulent dissipation scale. For all three models, the
first three equations assume the following form.

au + a 0 (A.1)ax ay

u + V -= Ue + T (A.2)

ak + vk = a [.e-;] - e (A.3)

Note that Equations (A.1-A.3) do not include molecular viscosity.
This is a valid approximation in the defect layer as the eddy vis-
cosity is proportional to U61, where Ue is the boundary-layer-edge
velocity and 68 is displacement thickness. Hence, the ratio of mo-
lecular to eddy viscosity varies inversely with displacement-thick-
ness Reynolds number and is thus very small. The difference amongst
the three models is the way the dissipation, e , and the eddy vis-
cosity, VT' are computed. ,

A.1.1 New Model

For this model, In addition to Equations (A.1-A.3) we haves

C Bwk (A.4a)

VT - k/M (A.5a)aa (A.a)
Uj W * Vj T - ay y(1G Ty- A.
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Leaving a and a* undetermined, the values for the remaining closure
coefficients area

8 3/40 , 8' = 9/100

(A.7a)

A. 1.2 Wilcox-Rubesin Model

In this model, the additional equations are as follows.

8wk (A.4b)

VT W k/W (A.5b)

3W2 + (W U2 3u]2 (A) + aO,2w (A.6b)

where Z = t// . Values for the closure coefficients area

. - 3/20 , 81 = /100

a - 1/2 , a1  = 1/2 (A.7b)

ad -1 , Y 10/9

A. 1.3 Jones-Launder Model

In this model we compute dissipation, E , directly and so that the
additional equations arem

VT m8*kl/c (A. 5c)

u B cl k a - V,/k + (A.6c)By U 2E2 Tk

Values for the closure coefficients areaSI.
8' ., 9/100

c - 31/20 , c 2 w 2 (A.7c)

aI- 1a - 10/13
-6
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A.2 EXPANSION PROCEDURE

Following the formulation of Wilcox and Traci (Ref 8), we introduce
a streamfunction *, and seek a perturbation solution of the form:

= A - -IF + (A.8)21 e
k T E0 + .. (A.9*)

where i : :l*
T1= yiA , A=Ue 6 ' /u (A. 12)

lnlettngEquations (A.8-A. 12) into Equatoss (A.l1-A.7), neglecting
htglr' dm"tms, letti~ng N0 denote dimsionless eddy visc osity,

and defining0

II
~we obtain the following equations.

_N 0 --- s + (ITT-T)T + (T-TU1 2 aT E  (A. 14)

a (~ ) aKo
'- Na-- (a-2 02Tn - -4T<

~ 0T1)T E0T~~ +TO E K (A.11)

0)u T ax

where

E0% - K0 W (A.12)

and

N0- K0/ - kE0 (A.,7)

The tinal equation for each model i different; the equations ari

[1( 0 -47-
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New Model

N aN -2 -2 w2 WT + (aT-T 4WT) aw

oW " 2a x (A.18a)
S7 $ 0) T ax

Wilcox-Rubesin Model

SaW2  3 W2  W2
(a0 w T2T2T)n- + (aT-T-gT)Wo W2

TTT I OTT*j(W T_ T vTaT _T w 2~~J-[PO] Wl.S +-- a (A. t8b)

Jones-Launder Model

T T W ( T 8T0 T)Eo

S1K  U 2 E (A.c)

where the parameters aT,, T'aT and WT are defined in terms of 6,
u and skin friction, cfj 2 /Ue2 i.e.,

a T  = (2/cf)dS*/dx

8T = (6*/tw)dp/dx

(A.19)
, o = 6*/(cfX)

WT W (6' /c fuT )duT/dx

Equations (A.14-A.18) will have self-similar solutions only if aT,
8T and wT  are independent of x. As noted by Bush and Fendel1
(Rof 14), for Re 6 >> 1, u T varies sufficiently slowly that we have

WT - o(1) as Rea* -> - (A.20)

and, in addition, the shape factor to leading order approaches one
which (from inspection of the momentum-integral equation) implies

aT -> 1 + 3 0 T as Rep 6 -> - (A.21)

Thus, self-similar solution% exist provided the parameter TIs in-
dependent of x.
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In summary, the defect-layer equations for the leading order terms
in the perturbation expansions becomes

All Models

d No d--1  + (1+0 TUl = 0 (A.22)

No dK d- + / NoLd - E o  0 (A.23)
+ 1T 0ndw dn

New Model

d IN 0 d- (l+)n---- + (1+28T)Wo

+ w2 0 (A.24a)

Wilox-Rubesin Model

d dW 2  dW2  wa-I N o  + (1+0T) -. + 2(1+28T)W
) adL 2 $ ( dUl2 8W s

- + Ty ) - 0 (A.24b)

) -. Jones-Launder Model

d dE1 0- No-- + l+ 0T)n0- + (1+20T)Ec 1 dU1 2 E°02
+ -T .jK°Ij 'I- c o = 0 (A.24c)

A.3 BOUNDARY CONDITIONS

At the outer edge of the defect layer, we pose the conditions that
the velocity equal the frestream velocity. Additionally, we let
the turbulent energy assume a "mall value and insist that the tur-

I. bulent length scale have zero slope at the boundary-layer edge. In
their defect-layer analysis, Wilcox and Traci used these boudary' (conditions as well as explicitly prescribing both % and No. Thus,

r.: I U1  -0

K O 0 mall value at t TI (A.25)

1. dL-/dn 0/
0
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Approaching the surface, we must formally match to the law of the
wall. Matching is a bit different for each model but is neverthe-
less straightforward; details of the algebra will thus be omitted
in the interest of brevity. The limiting forms we have used for
q -> 0 follow.

10 1

i K~n, Ii1 + k~Lnnq

0 1 as n -> 0 (A.26)

W 1 + wlnnn
Eo 1- 1 + e nnn

" n

The coefficients ul, kl, wI and e1 are as follows.

1 OT ) (A.27)

New Model

U1 = -k/(l (A.28a)I=y8 m 2/ST!

w I = 2 lK k1/(l- 8/yae) (A.29a)

Wilcox-Rubesin Model

at C __W + (2aad) c) + (adO)K2

1 4 2Y/O~T(I-O/YO*) + 201c2 k (A.28b)2

u 1 2k IOT k (A. 28b)

2yv 27(l-(//) + 20K

Jones-Launder Model-

OK2 /

(1 +(d)c 2 /1a 1
S1 2(1 kl (A. 28c)

+" 2 OK (I-/4) + 2 /C

()-k1 (A.29c)

2(1 - c 2 /c 1 )
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Additionally, the coefficient u is determined from the integral
constraint for mass conrvationo, viz,

fU 1 ()dn = 1 (A.30

To Implement Equation (A.30) in the numerical solution of the din-
fect-layer equations, we proceed as follows. Because the velocity
is singular at n - 0, we integrate the numerical velocity profile
from a point above the surface which we denote by nL (typically Of

order .001 to .01) to the edge of the boundary layerp ne- Then,
we integrate the asymptotic profile for U1 0l) given in Equations

(A.26) from n - 0 to n I- The'latter integration involves
the unknown coefficient u0 . Finally, the sum of these two inte-
grals must be unity by virtue of Equation (A.30).

A.4 SKIN FRICTION AND WAKE STRENGTH

It is possible to determine the skin friction implied by the solu-

tion to the defect-layer equations by formal matching to the sub-
layer asymptotic velocity profile. Considering only leading order
terms, this means we says

u [1 ri n + +B = "n 0 u + 1 n -z UOK (A.31)

There follows immediately, noting that y n/Re66 and u /U - v -

IT2_ 1(.32

(B + u/1K) + 1 (A.32)
0 K ~ 6

Finally, combining Coles' composite profile [Equation (19)] with
Equation (A.32) and evaluating the resulting equation at the boun-
dary-layer edge, we arrive at the following expression for wake

strength, *i

2 - - Inre) (A.33)r.

.I
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APPENDIX B: VISCOUS MODIFICATIONS!

As noted In Section 4, very close to the surface the new model
equations predict the turbulent energy tends to zero as distance
to the 3.23 power. By contrast, if th quantity k is turbulent
kinetic energy we would expect to have k " y2  as y -> 0. Al-

i ternatively, if k is kinetic energy of surface-normal fluctua-
tions, we would expect to have k N y as y -> 0. Either way,
we do not expect to have a non-integer exponent such as 3.23.

While, on the one hand, this feature of model predictions is of
minor interest, there are other shortcomings of the model as for-
mulated in Sections 2-4 which are not necessarily minor. For ex-
ample, if transition from laminar to turbulent flow is important
for a given application, the model must be altered In order to

I achieve physically realistic predictions. Additionally, predic-
tions for low-Reynolds-number turbulent flows conceivably are
inaccurate if no prouision is made for viscous effects upon the

Kvarious closure coefficients. To make provision for extending the
model's applicability to such flows, this Appendix summarizes the
required viscous modifications to the model equations.

For two-dimensional boundary layers, the model equations assume
the following form:

+ v v - 8'wk + J(+a'vT) ]

__W Y(L W a (9.1

u +- + ( !+ _ (.T)2)-

where

VT Y Yk/w (8.3)

and the closure coefficients ares

8 3/40, a - 1/2, a- 1/2

8~~ - 11 + Z~ exp(-Re /4)](34
i' 413.4)

y* _ 1 - (1-X 2 )exp ( - ReT/Rk)

Y a . [1 - (1-X1)exp(-Re T/Rw)J
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Additionally, the quantities RO T , Rk and R are given by

TR k/wv X - V6155 Rk  I R - 9/4 (B.5)

The rationale for the modified closure coefficients follows.

Considering first the coefficient B' , the model-predicted very
near wall behavior of k now becomes k y 4 as y -> 0. Thus, our
prediction indicates k is most appropriately identified as being
the kinetic energy of the fluctuations normal to the surface. In
adition, the coefficient 4 in the exponential damping term has
been chosen to yield satisfactory agreement with the experimental
data of Batchelor and Townsend (Ref 23) for the late-time decay
of homogeneous turbulence.

Turning now to the coefficients Y and Y* , Wilcox and Rubesin
(Ref 9) found similar modifications necessary in their model in
order to achieve physically acceptable predictions in the viscous
sublayr. The indicated choice of the coefficient X guarentees
that in a Blasius boundary layer, turbulent energy will only be
amplified for Reynolds number exceeding the linear-stability min-
imum-critical Reynolds number. The values for RF and R have
been determined by analyzing the smooth-surface v scous suglayer.
The values quoted insure the model predicts the additive constant
in the law of the wall is 5.0.

Ne have rerun the Section 5 boundary-layer test cases using Equa-
tions (.1-B.5). In none of the cases have we detected signifi-
cant differences from results obtained when no viscous modifica-
tions appear in the model equations. However, we do notice a 20%
increase in computing time because of the many exponentials which
must be evaluated at every mesh point. We thus conclude that the
viscous modifications proposed in Equations (3.1-3.5) add little
to the model for fully-turbulent boundary-layer applications.

I
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